Reality as Countermeasure? Statistical Risk Assessment of Passive Attacks on Encrypted Keyword Search

Marc Damie, Jean-Benoist Leger, Florian Hahn, Andreas Peter

June 6, 2023 (ESSA3)

- MSc. in CS from Univ. of Tech. of Compiègne 🚺, specialized in **Data Mining**.
- PhD student between Inria [] and University of Twente .
- Working on **privacy-preserving machine learning** under the supervision of Florian Hahn (UTwente), Andreas Peter (Uni. Oldenburg **=**), and Jan Ramon (Inria).
- Previously worked on **attacking searchable symmetric encryption**: Damie et al. (USENIX 2021), Dijkslag et al. (ACNS 2022).
- Still have a few SSE-related ideas in mind.

1. Introduction

2. The attacker knowledge, a noisy knowledge

3. Statistical risk assessment

4. Conclusion

Searchable Symmetric Encryption (SSE) 🔐

Attacks against SSE schemes 💥

- Similar-data attacks (based on co-occurrence information)
- Known-data attacks (based on co-occurrence information)
- Query-frequency attacks
- Active attacks
- Other attacks: against range queries, conjunctive-keyword search, etc.
- Our focus: similar-data attacks against static schemes with single-keyword search
- Our approaches can be extended to other settings.

What precisely does "similar" data mean? 🔍

• After our attack papers \Rightarrow **unsatisfied by the notion of "similar" data**.

• The ML literature is more specific regarding data distribution assumptions.

• We started exploring the limits of this similarity assumption using statistics.

(naía-

From statistical exploration to concrete SSE problems 📚

Our statistical exploration reached novel conclusions for two main problems:

Practicality of SSE attacks

All the attack papers successively improved state-of-the-art, but the literature gives **no tool** to evaluate their **efficiency in real-world scenarios**.

SSE attack analysis

The **parameters influencing attack accuracy** are unclear, and attack papers often make **arbitrary choices** in the experiments (e.g., uniform document set splitting).

Ínnía -

• A robust statistical method to **assess the risk** of deploying an SSE scheme in concrete use cases.

- We show that the uniform dataset splitting used in all attack papers simulates an **advantageous scenario for the attacker** (i.e., the best source of similar doc.).
- An **attack analysis methodology** based on a similarity metric. We provide several novel conclusions about the parameters influencing attack accuracy.

Paper under submission...

Ínnía-

• A robust statistical method to **assess the risk** of deploying an SSE scheme in concrete use cases. [**Focus of this presentation**]

- We show that the uniform dataset splitting used in all attack papers simulates an **advantageous scenario for the attacker** (i.e., the best source of similar doc.).
- An **attack analysis methodology** based on a similarity metric. We provide several novel conclusions about the parameters influencing attack accuracy.

Paper under submission...

Innia-

1. Introduction

2. The attacker knowledge, a noisy knowledge

3. Statistical risk assessment

4. Conclusion

Simplified attacker knowledge: co-occurrence matrices 📝

Let n_{ind} (resp. n_{atk}) be the size of D_{ind} (resp. D_{atk}).

Revisiting the co-occurrence matrices 🔬

Our intuition

As in ML, we consider a **dataset as a sample of a random distribution**. We want to leverage the **randomness contained in the document sets**.

Co-occurence matrix distribution

The co-occurrence matrix is drawn from a random matrix distribution composed of (dependent) **Binomial variables**. Details in the paper.

NB: D_{ind} and D_{atk} can have different random distributions.

Innin -

Towards a statistical hardness assumption 🤍

A Estimation vs. probabilities: C_{query} and C_{atk} = estimators of unknown proba.

SSE attack as an estimation problem

- SSE attack problem \approx representative sampling for a survey.
- \Rightarrow attack success depends on the knowledge **size**, **quality and distribution**.

Statistical hardness assumption

- Classic crypto: **computationally expensive** cryptoanalysis \Rightarrow sec. guarantee.
- Encrypted search: **unlikelihood** of having a precise estimation (i.e., a "similar enough" dataset) ⇒ sec. guarantee.
- Risk assessment quantifies the statistical hardness.

1. Introduction

2. The attacker knowledge, a noisy knowledge

3. Statistical risk assessment

4. Conclusion

Concrete deployment problem

A company wants to deploy encrypted mailboxes with SSE for its employees.

Existing solutions to assess the risk?

- Consider the research results on Enron and Apache datasets ⇒ Problem: Enron and Apache are not similar (i.e., cannot represent all email use cases)
- The company has a dedicated sample dataset ⇒ <u>Problem</u>: the dataset size limits the simulations (e.g., cannot simulate attacks with large attacker knowledge).

Problems with theoretical bounds

- SSE attack problem is **complex**: \mathcal{NP} -complete, **dependent** random variables.
- A theoretical bound could be **non-informative** (i.e., too loose).
- Any scheme modification (e.g., attack mitigation) requires a new analysis.

Benefits of empirical bounds

- **Consider the use case specificities** (*via a sample dataset*) to obtain tight bounds.
- Support search scheme modifications, such as attack countermeasures.

 \Rightarrow **Our objective**: a method to **bound the attack accuracy** for a given use case (i.e., based on a **sample dataset representative** of the use case).

Estimating an empirical bound 📉

Figure: Accuracy upper bound of the IHOP attack (quantile: 0.95)

Conservative risk assessment

"Advantageous" simulation parameters: realistic attackers cannot benefit from better conditions.

Quantile regression

A quantile regression estimates (b, a) s.t. $Q_Y(\alpha) = b \cdot X + a^{\dagger} \Rightarrow$ ideal for a bound estimation.

Our upper bound function

 $Q_{Acc}(\alpha; n_{ind}, n_{atk}) = expit(b \cdot \log(\frac{1}{n_{ind}} + \frac{1}{n_{atk}}) + a).$ Detailed motivations in the paper.

[†] $Q_{Y}(\alpha)$: quantile α of data distribution Y.

Supporting real-world deployments 🛠

Setting a maximum index size

Deduce n_{\max} s.t. $\lim_{n_{\mathsf{atk}}\to\infty} Q_{\mathsf{Acc}}(\alpha; n_{\max}, n_{\mathsf{atk}}) < \mathsf{negl}$

Security guarantee

If the size limit is respected, the **attack accuracy remains negligible** with high probability.

Limitation

The estimated upper bound holds for a **specific attack** on a **given use case**.

Figure: Accuracy upper bound of the IHOP attack (quantile: 0.95)

Risk assessment pipeline 🔆

- Find a sample dataset representative of the use case.
- **Simulate attacks** using this dataset and the advantageous simulation parameters identified in the paper.
- Compute the **quantile regression** on the simulation results.
- Estimate a **maximum index size** and decide whether it is too low for the use case.

Reproduce this protocol if new attacks are released (or if the use case evolves).

Innin-

Tuning the security of SSE deployments 🔧

- Maximum index size could be too small ⇒ insecure use case by default.
- Solution: attack mitigation techniques.
- Risk assessment helps choose parameters **minimizing the overhead**.
- Can also tune the secure index parameters (e.g., queryable vocabulary).

Figure: Accuracy upper bound with varying mitigation parameters

1. Introduction

2. The attacker knowledge, a noisy knowledge

3. Statistical risk assessment

4. Conclusion

- The **stochastic model of co-occurrence matrices** provides a novel understanding of the SSE attack problem.
- We conceived a simple **risk assessment protocol based on robust statistical tools** to support real-world deployments.
- Some use cases can be deployed **securely without dedicated attack mitigation techniques**.
- We also provide various novel insights about attack analysis methodology.

- A unified security framework for all privacy-preserving technologies with statistical leakage (including SSE and PPML)? Bayes security measure [CSF'23]?
- **Formalizing the notion of statistical hardness** assumption.
- **Building upon recent papers**? (Gui et al. [2023], Kornaropoulos et al. [2022])
- Extending the risk assessment and similarity analysis to other settings: range queries, active attacks, query-frequency attacks, etc.

Contact me if you want to collaborate on these topics: marc.damie@inria.fr

Innin-

Thank you for your attention!

Additional slides Uniform document set splitting, a favored attacker simulation

Let C_{ind} be the matrix C_{query} with the same rotation as C_{atk} .

Definition

The document sets D_{ind} and D_{atk} are ϵ -similar if:

$$\mathbf{x} = \left| \left| \frac{C_{\mathsf{ind}}}{n_{\mathsf{ind}}} - \frac{C_{\mathsf{atk}}}{n_{\mathsf{atk}}} \right| \right|$$

Interpretation

The ϵ -similarity quantifies the divergence between two document sets.

Innin_

All attack papers use uniform splitting (e.g., on the Enron email dataset) to generate the document sets in their experiments.

Goal of this contribution

Shows that uniform splitting \Rightarrow best-case scenario for the simulated attacker.

Steps

- Uniform splitting contrary to other methods \Rightarrow equal document set distributions
- Equal (document set) random distributions \Rightarrow smaller ϵ -similarity
- Smaller ϵ -similarity \Rightarrow higher accuracy [Done in a previous paper]

Uniform sampling \Rightarrow equal document set distributions

Let p_{ind} and p_{atk} parametrize the random distributions of C_{ind} and C_{atk} .

Statistical test

We conceived a **statistical test** for the hypothesis $p_{ind} = p_{atk}$ ($p_{ind}, p_{atk} \in [0, 1]^{m \times m}$).

Experimental results

Tested the hypothesis with two sampling methods:

- Uniform sampling \Rightarrow Test not rejected (*p*-value always above 0.01).
- Year sampling \Rightarrow test strongly rejected (*p*-value below machine epsilon).

Equal random distributions \Rightarrow smaller ϵ -similarity

Let $\mathcal{E}^{p_{\mathrm{ind}},p_{\mathrm{atk}}}$ be the random distribution of the ϵ metric.

Stochastic Dominance

Let *X*, *Y* be two random distributions, $X \preccurlyeq Y \iff \forall z, \mathbb{P}(X \ge z) \le \mathbb{P}(Y \ge z)$

Our result

We prove that asymptotically: $\mathcal{E}^{p_{\text{ind}},p_{\text{ind}}} \preccurlyeq \mathcal{E}^{p_{\text{ind}},p_{\text{atk}}}$.

Interpretation

Equal document set distributions stochastically produce smaller ϵ

Innin-

Additional slides Attack analysis based on a similarity metric

Attack analysis based on a similarity metric 📊

Goal of this contribution

Use a similarity metric to improve attack analysis and comparison.

Example novel insight

The document set similarity is not the only factor influencing attack success.

Attack comparison

 $\epsilon\text{-similarity}$ + regression techniques \Rightarrow consistent and interpretable results.

Figure: Comparison of the estimation accuracy functions for three attacks.

A few novel insights about SSE attacks

• Indexed and attacker document set sizes have a **symmetric influence on accuracy**.

• Document set similarity is **not the only factor influencing attack success**.

• Leakage does not need to be indistinguishable, **just noisy enough**.

Ínnía -